Заказать звонок

095 426 33 13

050 765 26 22

Поиск по сайту

Ваша корзина

0 товаров
0 грн

Статьи / Типы солнечных панелей

Для преобразования энергии солнечного излучения в электричество нужны фотоэлементы. Наиболее распространенные технологии производства фотоэлементов:

  1. Кристаллические фотоэлементы:
    1. Монокристаллические кремниевые фотоэлементы;
    2. Поликристаллические фотоэлементы;
  2. Тонкопленочные фотоэлементы:
    1. Фотоэлементы с использованием диселенида индия и меди (CIS технология);
    2. Фотоэлементы с использованием теллурида кадмия (CdTe технология);
    3. Фотоэлементы с использованием аморфного кремния
    4. Производство монокристаллических фотоэлементов происходит с применением метода Чхоральского. Для того чтобы получить кремниевый монокристалл, в расплав кремния с бором погружают затравочный кристалл и постепенно поднимают на несколько метров над поверхностью раствора, при этом за затравочным кристаллом вытягивается кристаллизирующийся раствор. Из полученной монокристаллической заготовки срезают кромки для того чтобы получить квадратные элементы и разрезают его на элементы толщиной примерно 0,3мм. После этого элементы легируют фосфором для добавления n-проводимости и создания p-n перехода, полируют, наносят антиотражающее покрытие и токопродящие дорожки и мы получаем готовый к использованию монокристаллический фотоэлемент.

Характеристики:

  • КПД от 15 до 18 процентов;
  • Форма квадратная или квадратная со скругленными или срезанными углами;
  • Толщина 0,2 – 0,3мм;
  • Цвет от темно-синего до черного с антиотражающим 
  • Внешний вид – однородный.

Поликристаллические фотоэлементы производятся с помощью равномерного направленного охлаждения емкости с расплавом кремния и бора. При этом в емкости формируются однонаправленные гомогенные кристаллы размером от нескольких миллиметров до нескольких сантиметров. Полученный блок поликристаллов обрабатывается так же, как и монокристаллическая заготовка.

  • КПД от 13 до 16 процентов;
  • Форма квадратная;
  • Толщина 0,24 – 0,3мм;
  • Цвет синий с антиотражающим покрытием, серебристо-серый без покрытия;
  • Внешний вид – блок кристаллов разного направления, некоторые кристаллы четко видны на срезе.

Активным полупроводниковым материалом в CIS фотоэлементах является диселенид индия и меди. CIS компаунд часто легируется галлием и (или) серой. При производстве элемента стекло покрывается слоем молибдена проводящим электрический ток, для фотоэлемента этот слой будет катодом.  Слой CIS компаунда в фотоэлементе обладает p-проводимостью и наносится на слой молибдена. Оксид цинка с примесью алюминия ZnO:Al используется в качестве прозрачного проводящего электричество анода. Этот слой имеет n-тип проводимости и в нем распылен вспомогательный слой оксида цинка i-ZnO. Промежуточный слой сульфида кадмия CdS используется для уменьшения потерь, связанных с несоответствием кристаллических решеток CIS и ZnO слоев.

  • КПД от 9 до 11 процентов;
  • Форма элемента соответствует форме модуля;
  • Толщина модуля в незакаленном стекле от 2 до 4мм;
  • Цвет от темно-серого до черного;
  • Внешний вид – однородный.

Фотоэлементы с использования теллурида кадмия CdTe производятся на подложке с прозрачным TCO проводником, который изготавливается из оксида индия и олова ITO и используется как передний контакт. Эта подложка покрывается слоем селенида кадмия CdS с n-типом проводимости. После этого наносится абсорбирующий слой теллурида кадмия CdTe с p-типом проводимости. После этого модуль закрывается металлической токопроводящей пластиной.

CdTe_imgХарактеристики:

  • КПД 8,5%;
  • Форма элемента соответствует форме модуля;
  • Толщина модуля в незакаленном стекле – 3мм;
  • Цвет от зеркального темно-зеленого до черного;
  • Внешний вид – однородный.

Аморфный кремний в фотоэлементах не образует однородную структуру, но образуют беспорядочную сеть. Как результат, через открытые границы кристаллов происходит поглощение водорода. Этот гидрогенизированный аморфный кремний a-Si:H создается в реакторе плазмы из газовой фазы гидрида кремния SiH4. Легирование кремния производится смешиванием газов, содержащих легирующий элемент – гидрид бора B2H6 для p-проводимости и гидрид фосфора PH3 для n-проводимости. В связи с небольшим расстоянием проникновения легирующих добавок в аморфный кремний, срок жизни носителей заряда не очень длинный, поэтому на слой кремния наносятся дополнительные слои с n- и p-проводимостями. В качестве переднего контакта используется прозрачный TCO проводник с оксидом олова SnO2, оксидом индия и олова ITO или оксидом цинка ZnO. В качестве заднего контакта используется металлическая токопроводящая пластина.

Amorfny_kremnij_imgХарактеристики:

  • КПД от 5 до 7 процентов;
  • Форма соответствует форме модуля, максимальный размер 2х3м;
  • Толщина элемента в незакаленном стекле от 1 до 3мм;
  • Цвет от коричневого до синего или фиолетового;
  • Внешний вид – однородный.
<< предыдущая статья  |  следующая статья >>